THE ORIGIN.

5600

world.g-shock.com
5600. A number with special meaning for G-SHOCK. It is used only in the names of models that have inherited the DNA of the very first G-SHOCK among all the thousands that have succeeded it. The square design that is said to symbolize the origin of all G-SHOCK provides evidence of the tireless efforts and continuous innovation born from a developer’s belief that he could create a watch that would not break, even if dropped, and represents the final form every G-SHOCK aims to achieve. Today, after 35 years of evolution, this tough spirit remains as resilient as ever. It is still the source of G-SHOCK’s indomitable strength.
The year 1983 saw the birth of G-SHOCK. It all began with the first legendary model DW-5000C.

G-SHOCK was born from a single belief that there could be a watch that would not break. Formed to handle its development, Project Team Tough constructed over 200 prototypes for performance testing and spent over two years developing the structure and improving the parts. An unimaginable process of trial and error was repeated continuously until 1983, when the shock-resistant structure that is still G-SHOCK’s core technology was finally completed.

"UNBREAKABLE" WATCH

"I want to make a timepiece that will not break, even if dropped." This proposal, submitted at an internal meeting over 35 years ago, suggested that the development should be a one-man job handled by Kikuo Ibe, the engineer responsible for the external design of watches at the time. It was considered a clear, simple idea that had come up when a watch happened to drop and break during working hours. Watches are delicate precision instruments, and, at that time, it seemed only natural that they should break when falling to the floor. The concept of a tough watch seemed not only unconventional, but even nonsensical. Nevertheless, the proposal was accepted. A project team comprising just three people was formed — and development of the new watch began.
A “MIRACLE MOMENT” ARRIVES

BREAKING THROUGH

With development apparently going nowhere, Ibe made a decision in despair. In one final effort, he would set a time limit of one week on his own initiative and spend all his waking hours on research. If that were not enough, he would consider resigning from his job.

After another week without success, the fateful day arrived. Ibe stepped outside the laboratory building to catch a breath of fresh air in a park next door, where he saw a child bouncing a rubber ball.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

THE ULTIMATE FORM AS ORIGIN

“BIRTH OF G-SHOCK”

It was not long before the first G-SHOCK, the model DW-5000C, was launched in 1983. The square design with its symbolic importance was created in pursuit of shock resistance alone, with nothing wasted. The ultimate form for achieving this single function, it has been handed down to the present as an eternal standard. Belief engenders fruit. G-SHOCK’s origin is the story of an unwavering belief that inspired a relentless quest and produced a tough spirit that promises never to fade away.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.

Suddenly, an inspiration struck him: “If you attached a watch to that ball, it could endure severe shocks.” The idea that sprang to mind in this miracle moment expanded to complete a unique structure in which the module at the heart of the watch floats in the air within a hollow structure inside the case.

A TUNNEL WITH NO EXIT

HARD DAYS

The team’s initial approaches to overturning common sense began from zero. They first assumed it would be best to cover the entire watch with a soft material. A few dropping experiments put that idea to rest without delay. They found that a watch would break no matter how much shock-absorbent rubber was adhering to the case exterior. And the more cushioning material they attached, the more the size increased. The experimental model soon swelled to the size of a large softball.

A 5-step shock-absorbent structure that protected the module, or heart of the watch, with five cushioning materials was eventually devised, solving the size problem. But a new problem concerning the strength of the electronic parts soon arose. When the team members tried to reinforce the parts, they became caught up in a vicious cycle in which strengthening one broken part led to breakage of another.

This unanticipated process of trial and error continued day after day: The developers would drop a prototype with reinforced parts from the window of the 3rd-floor men’s room and watch it break on the ground 10 meters below. They would then analyze the broken parts, strengthen them and try again. The cycle seemed endless.
CHALLENGE
FOR ABSOLUTE TOUGHNESS

STRUCTURE, FUNCTIONS, DESIGN, QUALITY. COMMITTED TO EACH ASPECT OF TOUGHNESS WITHOUT COMPROMISE, G-SHOCK CONTINUES ITS TIRELESS CHALLENGE OF ABSOLUTE TOUGHNESS.

1 | STRUCTURE
2 | FUNCTIONS
3 | DESIGN
4 | QUALITY
1 STRUCTURE Unwavering toughness, In variable structure, Inevitable design.

HOLLOW CASE STRUCTURE
The module is floated in the air inside a case with a hollow structure. External shocks are mitigated. The materials are selected for their flexible shock-absorbent characteristics. Urethane resin is used as a durable exterior material.

ALL-DIRECTIONAL COVERING
Knobby protrusions from the case and bezel protect the buttons and crystal from direct shocks. The band connection section is stiffly curved, moreover, to shield the back of the case against direct shocks.

UNCHANGEABLE SQUARE DESIGN
A rectangular form was devised as the optimal shape for shock-resistant construction. This form, which eliminated all waste and became the original G-SHOCK form, still boasts a perfection that is recognized as the final form.

STRUCTURAL REINFORCEMENT
Since the launch of the DW-5600E in 1996, the inner case has been constructed of resin. Exchanging the case back for the back of a panel enabled further weight reduction. Structural changes introduced to increase shock resistance included efforts to reinforce the module further against impacts.
FUNCTIONS

Assuring practical usability under any circumstances

1996

Light Functions

Development of an EL backlight improves the practicality of the dial light function, compared to the conventional miniature bulb. As an improvement, the backlight is not activated in sunlight but turns on automatically with just a tilt of the wrist, and eventually into a high-brightness LED light.

*Photo shows model DW-5600E-1.

2002

Stronger in the Dark

Light Functions

Converting Light to Power (Solar-Powered)

CASIO’s proprietary solar-charging system that converts light into ample electric power to provide stable operation of multiple functions is installed. It’s installed in many models to eliminate the bother of periodic battery replacements.

*Photo shows model G-5600-1.

2005

Keeping Accurate Time (Radio-Controlled)

Keeping Accurate Time with Multiband 6

A watch equipped with a multiband 6 that receives standard time radio waves and corrects the time automatically and provides multi-band radio wave reception is also added. Many models can receive radio waves even if broadcasting stations are weak.

*Photo shows model GW-5600J-1.

2008

Pursuit of Multifunctionality (Sports Functions)

 Watches equipped with functions for use in wide-ranging sports, including stopwatch, timer, and Tide Graph/Moon Data display, are introduced. The spheres of tough watch activity continue to expand.

*Photo shows model GLS-5600X-6.

2012

Improved Usability (Bluetooh)

Bluetooth® communication is adopted to provide automatic time correction from a smartphone. Various other operations, such as alarm and timer setting, can also be managed with the smartphone app, making easy operation without touching the watch. Daily life usability is more convenient than ever.

*Photo shows model GB-5600AA-1.

1996

1996

2002

2005

2008

2012
The introduction of color resin in 1992 was followed by the development of various colorings, such as mixed color molding and skeleton (transparent) resin, drawing on the properties of resin. Case and band decoration making full use of advanced coating and printing technologies was also realized, moreover, greatly expanding the range of design possibilities.

Design innovations included inverting the LCD to make the backlight inconspicuous during nighttime activities, and expanding the expressive possibilities of digital watches through such gimmicks as logos and graphics that emerge when the EL backlight is illuminated.
4 | QUALITY
Striving for greater heights in a commitment to product manufacturing

EVOLUTION OF MATERIALS

While urethane resin remains a mainstream band material, various other materials have been developed in pursuit of greater strength. Besides meeting the demands of hard use, these developments have led to improved wearability and provided new directions for product design.

EVOLUTION OF VALUE

By devoting unstinting attention to materials and finishing, G-SHOCK seeks to express the eternal value of strength. The concept model is just one of many to realize an incomparable level of quality.

Resin band
[DW-5000C-1A]

01 1983

02 1993

03 2010

04 2018

Carbon-fiber insert band
[GW-5600-1]

Metal band
[DW-5000D-1]

05 2001

06 2005

07 2009

08 2010

09 2015

Metal core band
[GW-5600BC2-1]

DLC coating screwback
[GW-5000-1]

Artificial opal dial
[GLS-5000KL-6]

18K gold case & band
[Baselworld Reference Exhibition Model]
In the 35 years since the launch of the first model, G-SHOCK has continued to evolve in search of yet greater heights, while always maintaining its inherited square design.
DW-5600E

FEATURES

FUNCTIONS

· 1/100-sec. stopwatch
· Timer/Multi-alarm
· Full auto calendar
· EL backlight

200 m water resistance
Built for hard use, in the rain or around water.

Flash alert
Flashes in synch with alarm/time signal/timer.

Button guard
Shaped to protect the buttons against direct shocks.

Bezel form
Form with protrusions to protect the glass.

Band shape
Irregular shape acting as spring to guard the case back.

Shock resist mark
A function icon inherited from the first model signifying the durability to withstand free-falling shocks.

FUNCTIONS
- 1/100-sec. stopwatch
- Timer/Multi-alarm
- Full auto calendar
- EL backlight